Damage nucleation from repeated dislocation absorption at a grain boundary

نویسندگان

  • Zhiliang Pan
  • Timothy J. Rupert
چکیده

Damage nucleation from repeated dislocation absorption at a grain boundary is simulated with molecular dynamics. At the grain boundary–dislocation intersection site, atomic shuffling events determine how the free volume brought by the incoming dislocation is accommodated. This process in turn determines the crack nucleation mechanism, as well as the critical strain and number of dislocations that can be absorbed before cracking. Slower strain rates promote earlier crack nucleation and a damage nucleation mode where cracking is preceded by dislocation emission. The simulation methodology presented here can be used to probe other types of boundaries as well, although multiple thermodynamically equivalent starting configurations are required to quantify the damage resistance of a given grain boundary. 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Grain Boundary Disorder on Yield Strength

It was recently reported that segregation of Zr to grain boundaries (GB) in nanocrystalline Cu can lead to the formation of disordered intergranular films [1,2]. In this study we employ atomistic computer simulations to study how the formation of these films affects the dislocation nucleation from the GBs. We found that full disorder of the grain boundary structure leads to the suppression of d...

متن کامل

Jump condition for GND evolution as a constraint on slip transmission at grain boundaries

The jump condition at a possibly non-material interface for geometricallynecessary dislocation density in field dislocation mechanics (FDM) and its averaged approximation, phenomenological mesoscopic FDM (PMFDM), is derived. In the context of grain boundaries, the condition implies a tensorial constraint on all five grain boundary parameters, slip transmission at the boundary, possible grain bo...

متن کامل

Atomistic Simulations of Stress Concentration and Dislocation Nucleation at Grain Boundaries

Dislocation channeling observed in irradiated metals has been thought to be one of the key stress factors in irradiation assisted stress corrosion cracking since it is an evidence to suggest that the slip deformation is localized and that the strong misfit are generated at grain boundaries. In the present study, the stress concentration and defect nucleation of polycrystalline copper thin film ...

متن کامل

Stacking fault emission from grain boundaries: Material dependencies and grain size effects

When load is applied to fcc nanograins, leading partial dislocations nucleate at grain boundary steps and propagate into the grain, leaving stacking faults behind. The extent to which these faults expand before a trailing partial is emitted generally does not equal the equilibrium separation distance of the corresponding full dislocation. Here we use a density functional theory – phase field di...

متن کامل

Size effects in Al nanopillars: Single crystalline vs. bicrystalline

The mechanical behavior of bicrystalline aluminum nano-pillars under uniaxial compression reveals size effects, a stochastic stress– strain signature, and strain hardening. Pillar diameters range from 400 nm to 2 lm and contain a single, non-sigma high angle grain boundary oriented parallel to the pillar axes. Our results indicate that these bicrystalline pillars are characterized by intermitte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014